Search results

1 – 10 of over 6000
Article
Publication date: 3 May 2011

B.K. Prasad

The objectives of this paper are to assess the sliding wear response of a zinc‐based alloy over a range of sliding speeds and pressures in oil‐lubricated condition with respect to…

Abstract

Purpose

The objectives of this paper are to assess the sliding wear response of a zinc‐based alloy over a range of sliding speeds and pressures in oil‐lubricated condition with respect to a cast iron, to understand the role of different microconstituents in controlling the observed wear behaviour and to examine various operating material removal mechanisms.

Design/methodology/approach

Sliding wear tests have been carried out using a pin‐on‐disc machine in oil‐lubricated condition at different speeds and pressures. The wear response has been explained in terms of specific nature of various microconstituents of the specimen materials and substantiated through the characteristics of wear surfaces, subsurface regions and debris particles.

Findings

The wear rate increased with the sliding speed while load produced a mixed influence. Further, the friction coefficient and frictional heating were influenced by the test duration, load and speed in a mixed manner. Moreover, the zinc‐based alloy attained lower wear rate but higher friction coefficient than that of the cast iron while frictional heating followed a mixed trend.

Practical implications

The paper further establishes a zinc‐based alloy as a potential substitute material system to a well‐known cast iron in tribological applications and enables further understanding of the wear mechanisms.

Originality/value

The present paper assesses the sliding wear performance of a lighter zinc‐based alloy as an effective potential substitute material system to cast iron in tribological applications. An attempt has also been made to understand the role played by different microconstituents in controlling the wear behavior and substantiate the wear response through the characteristics of wear surfaces, subsurface regions and debris.

Details

Industrial Lubrication and Tribology, vol. 63 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 August 2014

B.K. Prasad

The purpose of the paper is to assess the influence of the volume fraction solid lubricants like talc lead and graphite in oil separately and in combination towards controlling…

Abstract

Purpose

The purpose of the paper is to assess the influence of the volume fraction solid lubricants like talc lead and graphite in oil separately and in combination towards controlling the sliding wear behaviour of a grey cast iron and understand the factors controlling the response of the material in a given set of experimental conditions.

Design/methodology/approach

The composition of the lubricating medium (oil) has been changed by dispersing 5 per cent graphite, talc and lead particles separately and in combination. Sliding wear tests were conducted on grey cast iron samples over a range of applied pressures. Parameters determined were wear rate and frictional heating. The wear behaviour of the samples was further substantiated through the features of wear surfaces, subsurface regions and debris particles. Material removal mechanisms and factors responsible for a specific response of the samples have also been analysed.

Findings

The wear rate increased with increasing applied pressure. Addition of graphite and lead to the oil separately or in combination brought about a reduction in the wear rate of the samples; talc and talc + lead produced a reverse trend. Temperature near the specimen surface increased with test duration and applied pressure. The test environment influenced the frictional heating in a manner similar to that of the wear rate. Adhesion and abrasion were observed to be the operating material removal mechanisms. Smearing of the solid lubricating phase and delamination resulting from cracking tendency also controlled the wear response.

Research limitations/implications

Oil is a very popular lubricant used in engineering applications involving friction and wear. Solid lubricants are used along with the oil. The nature, characteristics and content of the solid lubricants very much control the performance. Limited information is available pertaining to assessing the influence of the type and fraction of solid lubricants in the oil towards controlling the wear behaviour of cast irons (popularly known tribomaterials). The present study enables to understand the effectiveness of talc, lead and graphite in oil towards governing the wear characteristics of cast iron and analyse wear mechanisms and controlling parameters.

Practical implications

Graphite and talc are available in nature in abundance. Graphite is a popularly known solid lubricant, while talc is less explored. Lead is also well-known as a solid lubricant but poses health hazard in practice due to its toxic nature. The present study explores the lubricating capability of talc when mixed with oil separately or in combination with lead and graphite towards controlling the wear response of a grey cast iron. It enables to understand the factors responsible for the specific response of talc.

Social implications

Assessment of the lubricating potential of talc as a possible substitute to lead is important in view of the toxic nature of the latter. If successful, the exercise could enable to replace lead with talc.

Originality/value

The present manuscript is an original piece of the author's research work.

Details

Industrial Lubrication and Tribology, vol. 66 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 May 2009

B.K. Prasad

The purpose of this paper is to understand the sliding wear response of a cast iron as influenced by applied load and changing concentration of solid lubricant (graphite…

Abstract

Purpose

The purpose of this paper is to understand the sliding wear response of a cast iron as influenced by applied load and changing concentration of solid lubricant (graphite) particles in oil lubricant, and operating material removal mechanisms in different sets of experimental conditions.

Design/methodology/approach

The sliding wear response of a grey cast iron has been examined as a function of test environment and load. Properties evaluated were wear rate, friction coefficient and frictional heating. The wear behaviour of the samples has been substantiated through the characteristics of their wear surfaces, subsurface regions and debris particles.

Findings

The wear rate and frictional heating increased with load while friction coefficient was affected in an opposite manner. The presence of oil lubricant led to a substantial improvement in wear response (in terms of decreasing wear rate, friction coefficient and frictional heating) while the presence of graphite particles in the oil lubricant proved to be still better. A critical content of graphite in the oil lubricant becomes most effective towards improving the wear response of the samples. Formation of dark patches on the wear surface, substantial subsurface deformation and fine debris led to improved wear response.

Research limitations/implications

The study enables one to understand the wear behaviour of a cast iron as influenced by the changing concentration of solid lubricant (graphite) particles in the oil lubricant. It also enables one to understand the operating material removal mechanisms responsible for the observed wear characteristics of the samples under varying test conditions. The investigation helps one to see that only a critical concentration of the solid lubricant particles in oil can lead to the best wear performance of materials.

Originality/value

From a practical standpoint, the observations made here gain importance from the fact that solid lubricants are added frequently in oil in engineering applications but it becomes imperative to understand that only a critical concentration can lead to the best wear behaviour of materials.

Details

Industrial Lubrication and Tribology, vol. 61 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Content available
Book part
Publication date: 19 December 2016

Radha R. Sharma and Sir Cary Cooper

Abstract

Details

Executive Burnout
Type: Book
ISBN: 978-1-78635-285-9

Article
Publication date: 8 October 2019

Manjunatha Gudekote, Rajashekhar Choudhari, Hanumesh Vaidya, Prasad K.V. and Viharika J.U.

The purpose of this paper is to emphasize the peristaltic mechanism of power-law fluid in an elastic porous tube under the influence of slip and convective conditions. The effects…

Abstract

Purpose

The purpose of this paper is to emphasize the peristaltic mechanism of power-law fluid in an elastic porous tube under the influence of slip and convective conditions. The effects of different waveforms on the peristaltic mechanism are taken into account.

Design/methodology/approach

The governing equations are rendered dimensionless using the suitable similarity transformations. The analytical solutions are obtained by using the long wavelength and small Reynold’s number approximations. The expressions for velocity, flow rate, temperature and streamlines are obtained and analyzed graphically. Furthermore, an application to flow through an artery is determined by using a tensile expression given by Rubinow and Keller.

Findings

The principal findings from the present model are as follows. The axial velocity increases with an expansion in the estimation of velocity slip parameter and fluid behavior index, and it diminishes for a larger value of the porous parameter. The magnitude of temperature diminishes with an expansion in the Biot number. The flux is maximum for trapezoidal wave and minimum for the triangular wave when compared with other considered waveforms. The flow rate in an elastic tube increases with an expansion in the porous parameter, and it diminishes with an increment in the slip parameter. The volume of tapered bolus enhances with increasing values of the porous parameter.

Originality/value

The current study finds the application in designing the heart-lung machine and dialysis machine. The investigation further gives a superior comprehension of the peristaltic system associated with the gastrointestinal tract and the stream of blood in small or microvessels.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 December 2000

K.V. Prasad, M. Subhas Abel and Sujit Kumar Khan

Visco‐elastic fluid flow and heat transfer in a porous medium over a non‐isothermal stretching sheet have been investigated. The flow is influenced by linearly stretching the…

Abstract

Visco‐elastic fluid flow and heat transfer in a porous medium over a non‐isothermal stretching sheet have been investigated. The flow is influenced by linearly stretching the sheet in the presence of suction, blowing and impermeability of the wall. Thermal conductivity is considered to vary linearly with temperature. The intricate non‐linear problem has been solved numerically by shooting technique with fourth order Runge‐Kutta algorithm after using perturbation method. The zeroth order solutions are obtained analytically in the form of Kummer’s function. An analysis has been carried out for two different cases, namely prescribed surface temperature (PST) and prescribed heat flux (PHF) to get the effect of porosity and visco‐elasticity at various physical situations. The important finding is that the effect of visco‐elasticity and porosity is to increase the wall temperature in case of blowing and to decrease in both the cases of suction and when the stretching sheet is impermeable.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 10 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 February 2022

Krishna Mohan A., Reddy P.V.N. and Satya Prasad K.

In the community of visual tracking or object tracking, discriminatively learned correlation filter (DCF) has gained more importance. When it comes to speed, DCF gives the best…

Abstract

Purpose

In the community of visual tracking or object tracking, discriminatively learned correlation filter (DCF) has gained more importance. When it comes to speed, DCF gives the best performance. The purpose of this study is to anticipate the object visually. For tracking the object visually, the authors proposed a new model based on the convolutional regression technique. Features like HOG and Harris are used for the process of feature extraction. The authors’ proposed method will give the best results when compared with other existing methods.

Design/methodology/approach

The visual tracking of many real-world applications such as robotics, smart monitoring systems, independent driving and human-computer interactions are a major and current research problem in the field of computer vision. This refers to the automated trajectory prediction of an arbitrary target object, often given in the first frame in a bounding box while moving about in successive video frames. In the community of visual tracking or object tracking, DCF has gained more importance. Discriminative trackers strive to train a classifier that differentiates the target item from the background. The fundamental concept is to train a correlation filter that creates high responses around the target and low responses elsewhere. For tracking the object visually, the authors proposed a new model based on the convolutional regression technique. Features like HOG and Harris are used for the process of feature extraction. Through experimental analysis, the authors have evaluated several performance assessment metrics such as accuracy, precision, F-measure and specificity. The authors’ proposed method will give the best results when compared with other existing methods.

Findings

This process involved DCF which gained more importance. When it comes to speed, DCF gives the best performance. The main objective of this study is to anticipate the object visually. For tracking the object visually, the authors proposed a new model based on the convolutional regression technique for tracking the objects and these results will be used for identifying the action of the object.

Originality/value

The main theme exists in the process is to identify the tracking motion of the object by using convolution regression with varied features. This method proves that it will provide better results when compared to state of art methods.

Details

International Journal of Pervasive Computing and Communications, vol. 18 no. 5
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 1 December 2001

M. Subhas Abel, Sujit Kumar Khan and K.V. Prasad

Presents a numerical solution of the two‐dimensional laminar boundary layer problem on free and forced convection of an incompressible visco‐elastic fluid immersed in a porous…

Abstract

Presents a numerical solution of the two‐dimensional laminar boundary layer problem on free and forced convection of an incompressible visco‐elastic fluid immersed in a porous medium over a stretching sheet. Here, the driving force for the flow is provided by an impermeable sheet stretched with a velocity proportional to the distance from a slit and buoyancy effects due to both temperature and concentration gradients. The resultant governing boundary layer equations are highly non‐linear and coupled form of partial differential equations, and they have been solved by employing a numerical shooting technique with fourth order Runge‐Kutta integration scheme. Numerical computations are carried out for the non‐dimensional physical parameters. The results are analyzed for the effect of different physical parameters like visco‐elasticity, permeability of the porous medium, Grashof number, Schmidt number and Prandtl number on the flow, heat and mass transfer characteristics. One of the several important observations is that the combined effect of thermal diffusion and diffusion of species is to increase the horizontal velocity profile and to decrease the temperature and concentration profiles in the boundary layer flow field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 11 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 July 2021

Khader Zelani Shaik, Siddaiah P. and K. Satya Prasad

Millimeter wave spectrum represents new opportunities to add capacity and faster speeds for next-generation services as fifth generation (5G) applications. In its Spectrum…

Abstract

Purpose

Millimeter wave spectrum represents new opportunities to add capacity and faster speeds for next-generation services as fifth generation (5G) applications. In its Spectrum Frontiers proceeding, the Federal Communications Commision decided to focus on spectrum bands where the most spectrums are potentially available. A low profile antenna array with new decoupling structure is proposed and expected to resonate at higher frequency bands, i.e. millimeter wave frequencies, which are suitable for 5G applications.

Design/methodology/approach

The presented antenna contains artificial magnetic conductor (AMC) surface as decoupling structure. The proposed antenna array with novel AMC surface is operating at 29.1GHz and proven to be decoupling structure and capable of enhancing the isolation by reducing mutual coupling as 8.7dB between the array elements. It is evident that, and overall gain is improved as 10.1% by incorporating 1x2 Array with AMC Method. Mutual coupling between the elements of 1 × 2 antenna array is decreased by 39.12%.

Findings

The proposed structure is designed and simulated using HFSS software and the results are obtained in terms of return loss, gain, voltage standing wave ratio (VSWR) and mutual coupling. The S-Parameters of each stage of design is tabulated and compared with each other to prove the decoupling capability of AMC surface in antenna arrays.

Originality/value

The proposed structure is designed and simulated using HFSS software, and the results are obtained in terms of return loss, gain, VSWR and mutual coupling. The S-Parameters of each stage of design is tabulated and compared with each other to prove the decoupling capability of AMC surface in antenna arrays.

Details

Circuit World, vol. 47 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 25 February 2022

Khader Zelani Shaik, P. Siddaiah and K. Satya Prasad

Planar periodic metallic arrays behave as artificial magnetic conductor (AMC) surfaces when placed on a grounded dielectric substrate, and they introduce a zero-degree reflection…

Abstract

Purpose

Planar periodic metallic arrays behave as artificial magnetic conductor (AMC) surfaces when placed on a grounded dielectric substrate, and they introduce a zero-degree reflection phase shift to incident waves. The antenna designers have new challenges while designing the AMC structure. The steps followed in designing the structure are as follows: 1) Designing the antenna, aimed to operate at millimetric wave frequencies, (2) Designing the AMC at desired frequencies, (3) Integrating the antenna design and AMC to resonate at millimetric wave frequencies and (4) Validate the output parameters of the antenna to be suitable for Internet of Things (IoT) applications.

Design/methodology/approach

The antenna is integrated with artificial material known as high impedance surface (HIS) for performance enhancement. A miniaturized, multiband, enhanced gain, AMC-integrated CPW-fed antenna is proposed and aimed to operate at millimetric wave frequencies, which is most suitable for IoT applications. The developed antenna operates at an extremely high range (30–300 GHz), i.e. from 40 to 60 GHz with the return loss values at lesser than −20 dB, and gain is greater than 10. The antenna is developed and simulated by using HFSS software.

Findings

An extensive research study has been carried out to develop a low profile, high gain and optimized antenna. The first two steps are separately designing the antenna and the AMC unit cell at the desired frequencies. The third step is finding the antenna or AMC radiating parts responsible for each resonant frequency by analysing the surface current distribution. CPW fed along with AMC integration has made the antenna feasible to achieve the extremely high frequency (EHF) range, i.e. 40–60 GHz, which is highly adoptable in IoT applications.

Originality/value

The result represented that the developed antenna is resonating at EHF rank with high gain and good imped matching when it is being compared with the previous models and has only CPW fed without having AMC structure integration. It is evident that the antenna which has only CPW fed has resonated at lower frequency than EHF range and justified output characteristics. But when it is embedded with the AMC structure, it resonates at the EHF range, which makes the antenna highly suitable for IoT applications, with more accuracy and high data rate possibility.

Details

International Journal of Intelligent Unmanned Systems, vol. 11 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

1 – 10 of over 6000